Abstract

The synthesis of polyaniline based nickel molybdate nano composite cation exchanger was described by sol–gel method and was explored to study the electrical, optical and analytical applications. The nano composite material was characterized by Fourier Transform Infrared (spectrometer), X-ray diffraction, particle size analyzer, scanning electron microscopy and tunneling electron microscopy. The XRD of nano composite material confirmed the semi-crystalline nature while as particle size analysis as well as TEM depicted average particle size of 76nm. The partition coefficient studies of different metal ions in the composite were performed in demineralised water and sodium dodecyl sulfate surfactant, and it was found to be selective for Pb(II), Hg(II) and Th(IV) ions. To implement the use of polyaniline Ni(II) molybdate nano composite as adsorbent, some important binary separations of metal ions were performed. SEM analysis showed that the nano composite has random non-preferential orientation with no visible cracks and appeared to be composed of dense and loose aggregation of small particles. The UV–vis spectrum of the nano composite indicated a band gap of about 3.44eV showing a weak blue shift compared to 3.37eV for the bulk. Due to their optical and electrical properties, nano composite is promising candidate for use as selectivity of different cations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.