Abstract

Cadmium manganese telluride (CdMnTe or CMT), a compound semiconductor, is considered a promising material for the fabrication of high-performance room-temperature x-ray and gamma-ray detectors. The presence of material defects, e.g., high density of Te inclusions, has been a long-standing issue in CMT crystals grown by various Bridgman methods, since these defects degrade the device performance via charge-trapping. To address this issue, we employed the modified floating-zone method (MFZ) to grow CMT crystals and obtained as-grown crystals free of Te inclusions. This represents a new and distinct feature, absence of Te inclusions, compared to CMT crystals grown by Bridgman methods. White-beam x-ray diffraction topography (WBXDT) measurements demonstrated the existence of a high stress field within the MFZ-grown CMT crystals, which originates from the steep temperature gradient near the growth interface. Furthermore, we achieved a resistivity of 109 Ωcm for the MFZ-grown CMT crystals. The low-temperature photoluminescence (PL) measurements show that the intensity of the dislocation-related Y band is much higher than that of the principal exciton peaks, (D0,X) and (A0,X), confirming that the crystalline quality is affected by the high stress field. A long-term in-situ or post-growth thermal annealing will help to release such stress to improve the crystalline quality. Open image in new window

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call