Abstract

Nickel oxide (NiO) thin films were prepared by reactive pulsed laser deposition on thermally oxidized Si substrates in 10Pa oxygen pressure. The substrate temperature during deposition was varied and its influence on the structural, electrical and nanomechanical properties was studied. It was proved that the structural properties were affected by the increase of substrate temperature improving the crystalline structure. Furthermore, a higher substrate temperature resulted in a thicker NiO film, which was attributed to an increased grain size. This effect influenced the electrical properties, too. Resistivity measurements showed that it increased with the increase of substrate temperature. For the first time, the nanomechanical properties of NiO films were studied. The formation and improvement of crystalline structure affected the nanomechanical properties. Nanoindentation testing of NiO thin films revealed an increase of hardness (H) and elastic modulus (E) and a decrease of surface roughness when increasing the substrate temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call