Abstract

Metal oxide nanoparticles have gained a lot of popularity in recent years because of their broad band gap and several practical uses in solar, catalysis, sensors, actuators, and other domains. This work investigates the effects of Gd ion substitution on structural and electrical transportation properties in co-precipitated ZnO nanostructures. The prepared samples were characterized using XRD, field emission scanning electron microscopy, FT-IR (infrared spectroscopy), PL (photoluminescence), and complex impedance spectroscopy. The XRD data with crystallite size of 29 nm revealed the wurtzite hexagonal structure in space group P63mc. The morphology micrograph shows where the samples have accumulated. For two hours, a photocatalytic reactor was used to measure the photocatalytic degradation of Gd-doped ZnO nanoparticles. Degradation efficiencies (ϳ%) for the ZnO sample doped with Gd are 81 percent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.