Abstract

AbstractZnO/TiO2 composite ceramics have been prepared by solid‐state reaction technique at 900°C. The X‐ray diffraction results revealed the formation of secondary phases referred to as spinel Zn2TiO4 and hexagonal ZnTiO3. The structural analysis showed that all the composites that have been prepared have a polycrystalline nature and a hexagonal wurtzite structure. The complex modulus (M) and electric impedance of the samples have been investigated by broadband dielectric spectroscopy in a wide range of temperature (40°C‐110°C) and frequency (0.1 Hz to 10 MHz). The modulus plots (M′′, M′) illustrate the presence of non‐Debye type of relaxations attributed to the effects of interfacial and dipolar polarizations. The real and the imaginary parts of the impedance are well fitted to equivalent circuit models. At high temperatures, Z″max varies from 0.03 × 106 to 4.9 × 106 Ω when the TiO2 doping concentration increases from 1 to 7 wt%. From the obtained results, the secondary phase ZnTiO3 plays an important role in the electrical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.