Abstract

BaPd2As2, belonging to the 122 pnictide group, is an iron-free layered transition metal arsenide which exhibits superconductivity at low temperature when realized in the ThCr2Si2 type structure (I4/mmm). We have performed density functional theory (DFT) based calculations to investigate the structural, elastic, electronic, thermodynamic, and optical properties of BaPd2As2 in this study. The structural, elastic, and the band structure features are compared with the available experimental and theoretical results. Pressure and temperature dependences of various important thermodynamic functions, e.g., bulk modulus, specific heats at constant pressure and volume, coefficient of volume thermal expansion, and Debye temperature are studied in details for the first time. The optical parameters of BaPd2As2 are also studied in details for the first time. The optical properties compliment the electronic band structure characteristics. Optical constants show significant dependence of the state of polarization of the incident electric field. BaPd2As2 exhibits high reflectance in the infrared and near-visible region and strongly absorbs the ultraviolet radiation. The relevance of the electronic energy density of states and the characteristic phonon frequency to superconductivity in BaPd2As2 is also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.