Abstract

The structural, mechanical, electronic and thermodynamic properties of the tetragonal structure germanium carbonitride (t-GeCN) were first investigated using the density function theory with the ultrasoft psedopotential scheme in the frame of the generalized gradient approximation and the local density approximation. The elastic constants have confirmed that the t-GeCN is mechanically stable and phonon spectra have confirmed that the t-GeCN is dynamically stable. The anisotropy studies show that t-GeCN exhibits a larger anisotropy in its Poisson's ratio, Young's modulus, shear modulus, sound velocities and universal elastic anisotropy index. Electronic structure study shows that t-GeCN is an indirect semiconductor with band gap of 0.628eV. The thermodynamic properties of t-GeCN, including Debye temperature, heat capacity, Grüneisen parameter and thermal expansion coefficient are investigated utilizing the quasi-harmonic Debye model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call