Abstract

Non-prismatic reinforced concrete (RC) beams are widely used for various practical purposes, including enhancing architectural aesthetics and increasing the overall thickness in the support area above the column, which gives high assurance to services that this will not result in the distortion of construction features and can reduce heights. The hollow sections (recess) can also be used for the maintenance of large structural sections and the safe passage of utility lines of water, gas, telecommunications, electricity, etc. They are generally used in large and complex civil engineering works like bridges. This study conducted a numerical study using the commercial finite element software ANSYS version 15 for analysing RC beams, hollow longitudinally sectioned and retrofitted with carbon fibre reinforced polymers (CFRPs), which were subjected to concentrated vertical loads. The numerical analysis results on the simulated beam models were in excellent agreements with the previous experimental test results. This convergence was confirmed by a statistical analysis, which considered the correlation coefficients, individual arithmetic means and standard deviations for all the calculated deflections of the simulated beam models. A proposed numerical simulation model with the hypotheses can be considered suitable for modelling the behaviours of simple supported non-prismatic RC beams under vertical concentrated loads. The numerical results showed that altering the cross-section from solid to hollow could reduce the load carrying capacities of the beams by up to 53% and increase the corresponding deflections by up to 40%, respectively. Using steel pipes for making recesses could enhance the loading capacity by up to 56%, increase the ductility, and reduce the corresponding deflections by up to 30%, respectively. Finally, it was found that bonding the CFRP sheets in the lower middle tensile areas of the hollow beams could improve the resistance and reduce the deformations by up to 27%. The failure patterns for all the numerical models were shear failure. The cylinder compressive strength could be used as a mechanical parameter for modelling and assessing the structural behaviours of the beam models, as its increase could improve the load carrying capacities and reduce the deflections by 30–50%.

Highlights

  • Hollow structural sections are widely used for various practical purposes, including enhancing architectural aesthetics and increasing the overall thickness in the support area above the column, which gives high assurance to services

  • The current study numerically investigated the behaviour of non-prismatic reinforced concrete (RC) solid and hollow beams, retrofitted with carbon fibre reinforced polymers (CFRPs) by using

  • The simulations of these models were performed by defining the mechanical properties and constants for all the materials that formed those beam models, as well as the loading and support conditions to represent the specimens from the previous experimental investigations [23]

Read more

Summary

Introduction

Hollow structural sections are widely used for various practical purposes, including enhancing architectural aesthetics and increasing the overall thickness in the support area above the column, which gives high assurance to services. These sections are commonly used in various types of structures, i.e., tall buildings, marine facilities, ports and towers [1,2,3,4,5,6]. Reducing the weight of heavy concrete is carried out in various ways, including using lightweight or recycled components [9,10], or hollow sections and slots within the concrete sections [7,11]

Non-Prismatic Beams
Literature Review
Significance of the Study
Profiles of the Numerical Beam Models
Mechanical Properties of Materials
Assumptions
Finite Element Modelling
Meshing details of typical non-prismatic
Results and Discussion
21. Comparison of experimental and numerical tensile strains of allofRC
Other Studied Parameters
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call