Abstract

Energy band-gap engineering via impurity intercalation into the 2-D MoO3 bilayer lattice has been studied using density functional theory calculations, and the effects of various kinds of dopants on the electronic structure have been explored. The dopants were incorporated via both oxygen and molybdenum substitution. The results show that although the MoO3 bilayer is an indirect band-gap semiconductor with zero magnetization, doped molybdenum trioxide experiences a band-gap reduction and a pure magnetization. Based on the calculated results, impurity doping leads to the creation of impurity levels inside the band-gap, and thereby both types of conductivity (n type and p type) can be identified. The calculated impurity formation-energies indicate that Nb and W atoms can be readily incorporated into the MoO3 bilayer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.