Abstract

Li-ion-hopping conduction is known to occur in certain highly concentrated electrolytes, and this conduction mode is effective for achieving lithium batteries with high rate capabilities. Herein, we investigated the effects of the solvent structure on the hopping conduction of Li ions in highly concentrated LiBF4/sulfone electrolytes. Raman spectroscopy revealed that a Li+ ion forms complexes with sulfone and anions, and contact ion pairs and ionic aggregates are formed in the highly concentrated electrolytes. Li+ exchanges ligands (sulfone and BF4-) rapidly to produce unusual hopping conduction in highly concentrated electrolytes. The structure of the solvent significantly influences the hopping conduction process. We measured the self-diffusion coefficients of Li+ (DLi), anions (Danion), and sulfone solvents (Dsol) in electrolytes. The ratio of the self-diffusion coefficients (DLi/Dsol) tended to be higher for cyclic sulfones (sulfolane and 3-methylsulfolane) than for acyclic sulfones, which suggests that cyclic sulfone molecules facilitate Li-ion hopping. The hopping conduction increases the Li+-transference number () under anion-blocking conditions, and of [LiBF4]/[cyclic sulfone] = 1/2 is as high as 0.8.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.