Abstract
The development of efficient catalysts is a highly necessary but challenging task within the field of environmental water remediation. Single-atom catalysts are promising nanomaterials within this respect, but in-depth studies encompassing this class of catalysts remain elusive. In this work, we systematically study the degradation of gemfibrozil, a persistent pollutant, on a series of carbon nitride photocatalysts, investigating both the effect of (i) catalyst textural properties and (ii) metal single atoms on the contaminant degradation. Tests in the absence of the catalyst result in negligible degradation rates, confirming the stability of the contaminant when dispersed in water. Then, photocatalytic tests at optimal pH, solvent, and wavelength reveal a correlation between the support surface area and the degradation. This points to the role of carbon nitride surface nanostructure on gemfibrozil degradation. In particular, the use of silver on mesoporous carbon nitride single-atom catalyst (Ag@mpgC3N4) leads to an unprecedented degradation of gemfibrozil (>90% within 60 min). The possible degradation intermediates and products were identified by mass spectrometry and were inert by cytotoxicity evaluation. We anticipate that, with further refinement and customization, the carbon nitride catalysts reported herein may find broad applications for light-driven degradation of other contaminants of emerging concern.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.