Abstract
AbstractThe conformation change picture of human islet amyloid polypeptide (hIAPP) is outlined using molecular dynamics simulation, and the structural influences of L16Q, S20G, and L16Q‐S20G mutations on the conformation of hIAPP are analyzed. Particularly, the conformational changes of the amyloidogenic‐related regions of residues 15–17 and 20–29 are emphasized. Our studies find that, for WT hIAPP, residues 15–17 always maintain a stable α‐helix structure, residues 20–25 structurally fluctuate between turn and 5‐helix, and residues 26–29 mainly adopt coil and bend structures. The hydrogen bonds between the polar groups of hIAPP, long‐rang van der Waals forces between the residues, and hydrophobic interactions between the residues of hIAPP are important driving forces to maintain the secondary structure of hIAPP. The replacement of leucine16 by glutamine stabilizes the helix structure of residues 15–17 and 20–23 of hIAPP monomer, and the structure of residues 24–29 fluctuates between helix and turn. The relatively stable helix structures of residues 15–17 and 20–29 are supposed to be beneficial for L16Q hIAPP to resist the aggregation as observed in the experiment. The substitution of serine20 by glycine drives residues 15–17 and 20–29 of hIAPP to transform from helix structure to β‐strands or coil structures with higher extension and flexibility, which may promote the aggregation of hIAPP as the experiments reported. These results are significant to understand the aggregation mechanism of hIAPP monomer into the dimer, trimer, oligomers and fibrils associated with the type 2 diabetes at the atomic level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.