Abstract

The structure of cathode catalyst layer (CCL) has strong relationship with the performance of polymer electrolyte fuel cells (PEFCs). We investigated the relationship between the catalyst layer structure and the cell performance experimentally. Multi-layered CCL is used to investigate the effect of the layer design on the cell performance. Membrane side of CCL works, as a reaction area, more actively than the gas diffusion layer (GDL) side at low relative humidity (RH) due to the lower proton conductivity. On the other hand, when the cathode gas has less oxygen partial pressure at high RH, GDL side is more active than membrane side owing to low diffusivity of oxygen. We suggest that the volumetric catalyst concentration of the CCL membrane side should be higher at low RH, however at high RH with lower oxygen partial pressure in cathode gas, the GDL side should have higher concentration. Simple theoretical model is employed to see the behavior of the reaction distribution in the catalyst layer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.