Abstract

Diclofenac, a nonsteroidal anti-inflammatory drug (NSAID), has been widely investigated in terms of its pharmacological action, but less is known about its effects on cell membranes and particularly on those of human erythrocytes. In the present work, the structural effects on the human erythrocyte membrane and molecular models have been investigated and reported. This report presents the following evidence that diclofenac interacts with red cell membranes: a) X-ray diffraction and fluorescence spectroscopy of phospholipid bilayers showed that diclofenac interacted with a class of lipids found in the outer moiety of the erythrocyte membrane; b) in isolated unsealed human erythrocyte membranes (IUM) the drug induced a disordering effect on the acyl chains of the membrane lipid bilayer; c) in scanning electron microscopy (SEM) studies on human erythrocytes it was observed that the drug induced changes different from the normal biconcave morphology of most red blood cells. This is the first time in which structural effects of diclofenac on the human erythrocyte membrane have been described.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.