Abstract

Maximizing the performance of magnetic refrigerators and thermomagnetic energy harvesters is imperative for their successful implementation and can be done by maximizing their operation frequency. One of the features delimiting the frequency and efficiency of such devices is the phase transition kinetics of their magnetocaloric/thermomagnetic active material. While previous studies have described the magnetic component governing the kinetics of the magnetovolume phase transition in La(Fe,Si)13 giant magnetocaloric materials, a comprehensive description of its structural component has yet to be explored. In this study, in situ synchrotron X-ray diffraction is employed to describe the structural changes upon magnetic field application/removal. Long magnetic field dependent relaxation times up to a few hundred seconds are observed after the driving field is paused. The phase transition is found to be highly asymmetric upon magnetic field cycling due to the different Gibbs energy landscapes and the absence of an energy barrier upon field removal. An exponential relationship is found between the energy barriers and the relaxation times, suggesting the process is governed by a non-thermal activation over an energy barrier process. Such fundamental knowledge on first-order phase transition kinetics suggests pathways for materials optimization and smarter design of magnetic field cycling in real-life devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call