Abstract

The biological activities of living organisms involve various inputs and outputs. The ATP-driven substances (biomolecules) responsible for these kinds of activities through membrane (i.e. uptake and efflux of substrates) include ATP-binding cassette (ABC) transporters, some of which play important roles in multidrug resistance. The basic architecture of ABC transporters comprises transmembrane domains (TMDs) and nucleotide-binding domains (NBDs). The functional dynamics (substrate transport) of ABC transporters are realized by concerted motions, such as NBD dimerization, mechanical transmission via coupling helices (CHs), and the translocation of substrates through TMDs, which are induced by the binding and/or hydrolysis of ATP molecules and substrates. In this mini-review, we briefly discuss recent progresses in the structural dynamics as revealed by molecular simulation studies at all-atom (AA), coarse-grained (CG), and quantum mechanics/molecular mechanics (QM/MM) levels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.