Abstract

Time-resolved x-ray diffraction with ultrashort x-ray pulses from a laser-produced plasma is used to study the lattice response of FeRh during a femtosecond laser-induced antiferromagnetic (AFM) to ferromagnetic (FM) phase transition. Pump-probe measurements at initial sample temperatures below as well as above the AFM-to-FM transition temperature and for different laser pump fluences allowed to disentangle the various contributions driving lattice expansion. In particular, the data reveal that the structural changes associated with the magnetic phase transition occur on a time scale of a hundred picoseconds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.