Abstract

Lipases have been established as important biocatalysts in several industrial applications, owing to their diverse substrate specificity. The availability of data on three-dimensional crystal structures for various lipases offers an opportunity for modulating their structural and functional aspects to design and engineer better versions of lipases. With the aim of investigating the structural components governing the extremophilic behavior of lipases, structural analysis of microbial lipases was performed using advanced bioinformatics and molecular dynamics simulation approaches. In sequences and functionally distinct alkaliphilic and thermophilic lipases were investigated for their functional properties to understand the distinguishing features of their structures. The alkaliphilic lipase from Bacillus subtilis (LipA) showed conformational changes in the loop region Ala132-Met137, subsequently, the active site residue His156 shows two conformations, toward the active site nucleophilic residues Ser77 and away from the Ser77. Interestingly, the active site of LipA is more solvent-exposed and can be correlated with the adoption of an open conformation which might extend and expose the active site region to solvents during the catalysis process. Furthermore, the MD simulation of thermophilic lipase from marine Streptomyces (MAS1) revealed the role of N- and C-terminal regions with disulfide bridges and identified a metal ion binding site that facilitates the enzyme stability. The novel thermo-alkaliphilic lipase can be designed to integrate the stability features of MAS1 into the alkaliphilic LipA. These structural-level intrinsic characteristics can be used for lipase engineering to amend the lipase activity and stability as per the requirements of the industrial processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.