Abstract

Unconditionally stable higher-order accurate time step integration algorithms based on the differential quadrature method (DQM) for second-order initial value problems were applied and the quadrature rules of DQM, computing of the weighting coefficients and choices of sampling grid points were discussed. Some numerical examples dealing with the heat transfer problem, the second-order differential equation of imposed vibration of linear single-degree-of-freedom systems and double-degree-of-freedom systems, the nonlinear move differential equation and a beam forced by a changing load were computed, respectively. The results indicated that the algorithm can produce highly accurate solutions with minimal time consumption, and that the system total energy can remain conservative in the numerical computation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.