Abstract

The treatment of agarose embedded plant nuclei by strong protein denaturants was demonstrated to result in discrete self-fragmentation of intact nuclear DNA. The set of resultant DNA cleavage products involves two main types of DNA fragments sized about 50-100 kb and 300-500 kb, being of the same type in various eukaryotic representatives. The pattern of ordered DNA fragmentation has been shown to be similar both in intact nuclei and in histone-depleted ones thus suggesting that the observed DNA fragments represent preexisting DNA structural domains, corresponding to the higher levels of chromatin folding. The topoisomerase II-specific poison teniposide (VM-26) has been shown to increase the ordered DNA cleavage while the conditions stimulating the topoisomerase II-mediated reverse reaction lead to the reassociation of the cleaved DNA domains. The data presented suggest that the nuclear DNA structural domains are involved in functioning of the topoisomerase II/DNA complex, the main property of which is its ability to mediate the cleavage/reassociation reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.