Abstract
The N-sulfated regions (NS domains) represent the modified sequences of heparan sulfate chains and mediate interactions of the polysaccharide with proteins. We have investigated the relationship between the type/extent of polymer modification and the length of NS domains in heparan sulfate species from human aorta, bovine kidney, and cultured NMuMG and MDCK cells. C5 epimerization of D-glucuronic acid to L-iduronic acid was found to be extensive and essentially similar in all heparan sulfate species studied, regardless of domain size, whereas the subsequent 2-O-sulfation of the formed iduronic acid residues varies appreciably. In aorta heparan sulfate, up to 90% of the formed iduronate residues were 2-O-sulfated, whereas in kidney heparan sulfate 2-O-sulfation occurred only in </=50% of the iduronate residues. The degree of 2-O-sulfation was consistently increased with increasing NS domain length, suggesting a correlation between 2-O-sulfation efficiency and length of the polymeric substrate during heparan sulfate biosynthesis. By contrast, 6-O-sulfation of glucosamine units did not correlate to domain size. 6-O-Sulfation exceeded 2-O-sulfation in NS domains from kidney heparan sulfate, but was very low in aorta heparan sulfate. Remarkably, total O-sulfation of NS domains, i.e., the sum of 2-O- and 6-O-sulfate groups, was highly similar in all heparan sulfate samples investigated. The results reveal marked tissue-specific variation in the sulfation patterns of NS domains and indicate previously unrecognized distinctions in the coordination of the three polymer modification reactions during heparan sulfate biosynthesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.