Abstract

Reported are the syntheses, crystal structures, and photophysical properties of 28, novel lanthanide compounds across five structural types, [Ln(3-NO2Tp)2(NO3)] (1-Ln, Ln = La-Tm, except Pm), [Bu4N][Ln(3-NO2Tp)(NO3)3] (2-Ln, Ln = Yb, Lu), [Eu(3-NO2Tp)2Cl(H2O)]·2iPrOH (3-Eu), [{Ln(3-NO2Tp)2}2(μ2-CO3)]·MeOH (4-Ln, Ln = La-Gd, except Pm), and [{Ln(3-NO2Tp)}4(μ2-OMe)6(μ4-O)] (5-Ln, Ln = Pr-Tb, except Pm) with the 3-nitrotrispyrazolylborate (3-NO2Tp-) ligand. The reaction of methanol or isopropanol solutions of LnX3 (X = Cl, NO3) with the tetrabutyl ammonium salt of the flexidentate 3-NO2Tp- ([Bu4N][3-NO2Tp]) yields Ln(3-NO2Tp)x complexes of various nuclearities as either monomers (1-Ln, 2-Ln, 3-Eu), dimers (4-Ln), or tetramers (5-Ln) owing to the efficient conversion of atmospheric CO2 to CO32- (dimers) or ligand controlled solvolysis of lanthanide ions (tetramers). 3-NO2Tp- is an efficient sensitizer for both the visible and near-IR (NIR) emissions of most of the lanthanide series, except thulium. Optical measurements, supported by density functional theory calculations, indicate that the dual visible and NIR Ln3+ emission arises from two intraligand charge transfer (ILCT) transitions of 3-NO2Tp-. This is the first report of lanthanide complexes with a nitro-functionalized pyrazolylborate ligand. The derivatization of the known Tp- ligand results in new coordination chemistry governed by the increased denticity of 3-NO2Tp-, imparting remarkable structural diversity and charge transfer properties to resultant lanthanide complexes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.