Abstract

To explore insecticides targeting the γ-aminobutyric acid (GABA) receptor, two series of novel isoxazoline derivatives containing sulfonic and carboxylic esters were designed and synthesized. Their insecticidal activities against Plutella xylostella, Mythimna separata, and Aedes aegypti larvae and their structure-activity relationship were investigated. The sulfonate-containing isoxazoline derivatives (10k-q) exhibited promising insecticidal activities against the three insect larvae. Compound 10o displayed excellent activities with LC50 values of 8.32, 5.23, and 0.35 μg/mL at 48 h against P. xylostella, M. separata, and A. aegypti larvae, respectively, which were better than or similar to those of avermectin. Furthermore, compound 10o exhibited a faster insecticidal effect than avermectin against M. separata. The mode of action of 10o was preliminarily verified by molecular docking, theoretical calculations, and measurement of glutamate decarboxylase and glutamic pyruvic transaminase activities. Compound 10o is a novel insecticidal candidate acting on GABA receptors, which could guide the discovery of isoxazoline insecticides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call