Abstract

A family of new coordination polymers based on a V-shaped flexible dicarboxyl building block 4,4′-(hexafluoroisopropylidene)bis(benzoic acid) and familiar metal ions (MnII, CoII, NiII, CuII, ZnII, and AgI) have been prepared and structurally characterized. Their thermal stability and solid state luminescent properties of the ZnII and AgI complexes have also been investigated. Single-crystal X-ray diffraction analysis reveals a significant structural diversity of these coordination frameworks, such as the 1-D zigzag chain, 2-fold interpenetrating layer composed of 21 helical arrays, and 3-D open network with 42 helicity and pcu topology based on the rod-shaped secondary building units (SBUs). Additionally, hydrogen bonding interactions are found in these structures to further extend or stabilize the coordination motifs. A comprehensive analysis of the coordination systems based on this dicarboxyl tecton also demonstrates that it is an excellent candidate for the design and construction of multiform metal–organic frameworks (especially helical arrays), which can be dominated by metal ions and/or synthetic conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call