Abstract

Rare-earth ions (RE = La3+, Nd3+, and Er3+) substituted BiFeO3 (BFO) ceramics were synthesized by a conventional solid-state sintering procedure. X-ray diffraction patterns and Raman spectra confirm a rhombohedral R3c symmetry in all samples with significant distortion in FeO6 octahedron, as well as the occurrence of remarkable spin-phonon coupling and notable change in magnetic transition temperature induced by RE dopants. The enhanced magnetization was observed in all RE-doped BFO ceramics, unveiling that the spatial spin structure of BFO should be perturbed by RE dopants. Diffuse reflectance spectra show a conspicuous evolution of interband electronic transitions in RE-doped BFO ceramics. Especially, the two crystal-field d-d band transitions (6A1g→4T1 and 6A1g→4T2g) exhibit a linear red-shift behavior with the reduction in the cell volume, which is well-linked with a linear tendency of increased magnetization. On the basis of these investigations, a possible mechanism was proposed in this paper to demonstrate the correlation between the structural distortion, interband electronic transitions, and magnetic properties in RE-doped BFO ceramics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.