Abstract

Wadsley-Roth niobium oxide phases have attracted extensive research interest recently as promising battery anodes. We have synthesized the niobium-molybdenum oxide shear phase (Nb, Mo)13 O33 with superior electrochemical Li-ion storage performance, including an ultralong cycling lifespan of at least 15000 cycles. During electrochemical cycling, a reversible single-phase solid-solution reaction with lithiated intermediate solid solutions is demonstrated using in situ X-ray diffraction, with the valence and short-range structural changes of the electrode probed by in situ Nb and Mo K-edge X-ray absorption spectroscopy. This work reveals that the superior stability of niobium molybdenum oxides is underpinned by changes in octahedral distortion during electrochemical reactions, and we report an in-depth understanding of how this stabilizes the oxide structure during cycling with implications for future long-life battery material design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.