Abstract

In further advancing display technologies, especially for improved blue emitters, to engineer the bandgap of promising semiconductors such as hybrid perovskites is important. Present-day methods for tuning the bandgaps of perovskites, such as the incorporation of mixed halide anions, suffer drawbacks such as phase separation and difficulty in synthesis. Here we report a new 2D lead iodide perovskite that emits in the blue spectral region. We exploit an increased angular distortion of PbI42- octahedra to widen the bandgap of 2D metal halide perovskites. We synthesized 2D lead iodide perovskites based on (4-Y-C6H4CH2NH3)2PbI4 (Y = H, F, Cl, Br, I) and substituted the halogen atoms with a -CF3 group to create (4-CF3-C6H4CH2NH3)2PbI4 compounds. We observed that the CF3-substituted material exhibited a ∼0.16 eV larger bandgap than did the halogen-substituted materials. We used X-ray diffraction and density functional theory simulations and found that the blue shift can be assigned to the angular distortion of the PbI42- lattice, a distortion traceable to repulsive intermolecular interactions between the trifluoromethyl groups on oppositely-arranged spacers. These results add a degree of freedom in tuning 2D perovskites to selected bandgaps for optoelectronic applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call