Abstract

Ribosome-inactivating proteins (RIPs) are a group of proteins exhibiting N-glycosidase activity leading to an inactivation of protein synthesis. Thirteen predicted Jatropha curcas RIP sequences could be grouped into RIP types 1 or 2. The expression of the RIP genes was detected in seed kernels, seed coats, and leaves. The full-length cDNA of two RIP genes (26SK and 34.7(A)SK) were cloned and studied. The 34.7(A)SK protein was successfully expressed in the host cells while it was difficult to produce even only a small amount of the 26SK protein. Therefore, the crude proteins were used from E. coli expressing 26SK and 34.7(A)SK constructs and they showed RIP activity. Only the cell lysate from 26SK could inhibit the growth of E. coli. In addition, the crude protein extracted from 26SK expressing cells displayed the effect on the growth of MDA-MB-231, a human breast cancer cell line. Based on in silico analysis, all 13 J. curcas RIPs contained RNA and ribosomal P2 stalk protein binding sites; however, the C-terminal region of the P2 stalk binding site was lacking in the 26SK structure. In addition, an amphipathic distribution between positive and negative potential was observed only in the 26SK protein, similar to that found in the anti-microbial peptide. These findings suggested that this 26SK protein structure might have contributed to its toxicity, suggesting potential uses against pathogenic bacteria in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call