Abstract

Limited proteolysis of the DNA-binding domain (residues 1-147) of the yeast transcriptional activator GAL4 has been used to define more precisely the subdomain structure required for DNA binding and dimerization. Two regions of the protein were found to be resistant to proteolysis: the cysteine-rich, zinc-binding region (residues 6-43) and a hydrophobic sequence between residues 52 and 97. Carboxy-terminal deletion fragments of the DNA-binding domain were generated and assayed by DNase 1 footprinting. This showed that the affinity of DNA binding depends on the sequence between residues 65 and 94. Structural comparisons by UV circular dichroism (CD) were made and the difference CD spectra indicate that strong alpha-helical content is found specifically in the region between residues 65 and 94, which previous studies have shown to enable dimerization and in this study the formation of a stable protein-DNA complex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.