Abstract

Abstract The presence of structural disorder in a photonic crystal is examined through the rotational symmetry extracted from a Fourier-Bessel approach to solving Maxwell's wave equation in cylindrical space. A dielectric correlation function is proposed that relates the original structure to the disordered structure and when normalized it can be used to quantify the level of any disorder mechanism present. It is shown that the presence of disorder causes a mixing of localized and extended states and that the mixing can be directly attributed to “off diagonal” elements of the eigen-matrix and rotational symmetry breaking within the structure. The properties of disorder in an ordered structure are used to identify locations of local order in disordered structures. The Fourier–Bessel analysis of a disordered structure confirms the presence of localized light states at these sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.