Abstract

The structural distortion and magnetoelastic coupling induced through commensurate magnetism has been investigated by neutron diffraction in structurally related MnWO$_4$ and NaFe(WO$_4$)$_2$. Both systems exhibit a competition of incommensurate spiral and commensurate spin up-up-down-down ordering along the magnetic chains. In the latter commensurate phases, the alternatingly parallel and antiparallel arrangement of Fe$^{3+}$ respectively Mn$^{2+}$ moments leads to sizeable bond-angle modulation and thus to magnetic dimerization. For NaFe(WO$_4$)$_2$ this structural distortion has been determined to be strongest for the low-field up-up-down-down arrangement, and the structural refinement yields a bond-angle modulation of $\pm 1.15(16)$ degrees. In the commensurate phase of MnWO$_4$, superstructure reflections signal a comparable structural dimerization and thus strong magneto-elastic coupling different to that driving the multiferroic order. Pronounced anharmonic second- and third-order reflections in the incommensurate and multiferroic phase of MnWO$_4$ result from tiny commensurate fractions that can depin multiferroic domains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.