Abstract
Chloroplasts and chlorophylls were isolated from the leaves of Dicranopteris linearis, a natural perennial fern sampled at rare earth element (REE) mining areas in the South-Jiangxi region (southern China). The inductively coupled plasma-mass spectrometry (ICP-MS) results indicated that REEs were present in the chloroplasts and chlorophylls of D. linearis. The in vivo coordination environment of light REE (lanthanum) or heavy REE (yttrium) ions in D. linearis chlorophyll-a was determined by the extended X-ray absorption fine structure (EXAFS). Results revealed that there were eight nitrogen atoms in the first coordination shell of the lanthanum atom, whereas there were four nitrogen atoms in the first coordination shell of yttrium. It was postulated that the lanthanum-chlorophyll-a complex might have a double-layer sandwich-like structure, but yttrium-binding chlorophyll-a might be in a single-layer form. Because the content of REE-binding chlorophylls in D. linearis chlorophylls was very low, it is impossible to obtain structural characteristics of REE-binding chlorophylls by direct analysis of the Fourier transform infrared (FTIR) and ultraviolet (UV)-visible spectra of D. linearis chlorophylls. In order to acquire more structural information of REE-binding chlorophyll-a in D. linearis, lanthanum - and yttrium-chlorophyll-a complexes were in vitro synthesized in acetone solution. Element analyses and EXAFS results indicated that REE ions (lanthanum or yttrium) of REE-chlorophyll-a possessed the same coordination environment whether in vivo or in vitro. The FTIR spectra of the REE-chlorophyll-a complexes indicated that REEs were bound to the porphyrin rings of chlorophylls. UV-visible results showed that the intensity ratios of Soret to the Q-band of REE-chlorophyll-a complexes were higher than those of standard chlorophyll-a and pheophytin-a, indicating that REE-chlorophyll-a might have a much stronger ability to absorb the ultraviolet light. The MCD spectrum in the Soret band region of lanthanum-chlorophyll-a showed a special peak, but yttrium-chlorophyll-a did not have this special peak, corresponding well to their double-layer and single-layer structure, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.