Abstract

In this research work, sol-gel technique was employed to prepare the strontium based spinel ferrite nanoparticles (SrFe2O4) with different ratios of terbium (Tb). Different characterization techniques were used to investigate the structural, morphological, dielectric and magnetic properties of the prepared samples. X-ray diffraction (XRD) result suggests that face-centered cube spinel nanocrystalline structure is formed. Crystallite size of the SrFe2O4 decreases with rising of Tb ratio. The morphology, shape and size of the SrFe2O4 were examined by scanning electron microscopy (SEM) analysis and results reveal inhomogeneous distributions of the nanostructures with high agglomeration. The electrical resistivity of the SrFe2O4 increases with rising of Tb ratio, which is confirmed from the cyclic voltammetry. It is observed that dielectric constant of all the samples decreases with increasing the frequency range. It is determined that the dielectric constants of the spinel ferrites are frequency dependent and decrease with increasing the frequency of applied electric field. The magnetic behavior of SrFe2O4 with different ratios of Tb was studied and it is found that the saturation magnetization values of samples decrease with increase in the substitution of Tb3+ at octahedral sites for Fe3+. This decrease in the values of Ms is also attributed to spin at surface of nanoparticles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call