Abstract
Due to the high Curie temperature the rare-earth-modified bismuth ferrite (BiFeO3 or BFO) and/or its derivatives have uncomplicated lead-free chemistries and simple perovskite structures have attracted the materials community. So, in this report, structural, micro-structural, ferroelectric and electrical characteristics of a rare-earth (Gd)-modified perovskite BiFeO3–BaTiO3 solid solution, fabricated by a cost effective solid-state reaction technique, have been presented. The structural analysis using X-ray diffraction pattern and data indicates the evolution of a mono-phase distorted perovskite structure with the existence of rhombohedral structure. The ambient temperature scanning electron micrograph of Gd modified BiFeO3–BaTiO3 solid solution exhibits uniform grain distribution over the surface. The dielectric parameters are found to be frequency and temperature dependent. The well defined polarization–electric field hysteresis loop of the samples at room temperature suggest that Gd substitution at the Bismuth site of the solid solution strongly affects remnant and saturated polarization of the materials. The ac conductivity spectra obeys the Jonscher’s power law. Based on the derived parameters of Gd modified BiFeO3–BaTiO3 solid solution, it is expected to fabricate a functional device.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Materials Science: Materials in Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.