Abstract

High resolution aeromagnetic and seismological data constrained by field-based structural investigations have been used to map and delineate the structural elements that affected and shaped the Midyan area in the northwest part of Saudi Arabia. The area was divided into four major domains defined by NNE, NNW, NW and ENE trending faults identified by trends, patterns and intensity of magnetic anomalies. The ENE trending left-lateral strike-slip faults intersected by NNE trending faults are the predominant tectonic features in the Gulf of Aqaba coastal area and stop at the boundary of a central domain characterized by complexity in the pattern and intensity of magnetic anomalies, that may be attributed to heterogeneity of basement rocks containing complex igneous rock suites including diorite, gabbro, ultramafic and alkali granitic rocks. This domain is characterized by the presence of narrow linear magnetic anomalies that extend for kilometers in an NNW direction, indicating dikes intruded through NNW trending faults. These dikes become WNW-oriented near their northern termination by transfer of movement to WNW-oriented faults marking the northern termination of the Red Sea rift. It is believed that this fault zone is still experiencing neotectonic activity, as evident from recorded seismicity. The aeromagnetic structural results coincide with fault plane solutions for the largest earthquakes, confirming aeromagnetic interpreted trends and illustrating mixed mechanisms between extensional and strike-slip faulting. Thus the study area displays different mechanisms associated with different tectonic trends which show clearly in the structural patterns of the area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call