Abstract
In this study, the stepwise isothermal crystallization or thermal fractionation of Ziegler—Natta and metallocene based polyethylenes (ZN-PE and m-PE) with two kinds of branch lengths (ethyl and hexyl) and branch compositions were studied using simultaneous synchrotron small-angle X-ray scattering (SAXS)/wide-angle X-ray diffraction (WAXD) and differential scanning calorimetry (DSC). The crystal long period and the invariant were determined by SAXS, and the variations of crystal unit cell parameters and the degree of crystallinity were determined by WAXD. The arithmetic mean length (Ln), the weightedmean length (Lw) and the broadness index (Lw/Ln) of the studied polyethylenes were previously determined by DSC. Results from these studies were interpreted using the model of branch exclusion, which affects the ability of the chain-reentry into the crystal phase. Multiple SAXS peaks and step-change in crystallinity change (WAXD) were seen during heating, which corresponded well with the crystal thickness distribution induced by stepwise crystallization. The effects of the heterogeneity of the 1-olefin branch length and the distribution on the crystal long period and the invariant as well as the degree of crystallinity were discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.