Abstract

Caledonian eclogite facies shear zones developed from Grenvillian garnet granulite facies anorthosites and gabbros in the Bergen Arcs of western Norway allow direct investigation of the relations between macroscopic structures and crystallographic preferred orientation (CPO) in lower continental crust. Field relations on the island of Holsnøy show that the eclogites formed locally from granulite facies rocks by progressive development of: (1) eclogite adjacent to fractures; (2) eclogite in discrete shear zones (> 2 m thick); (3) eclogite breccia consisting of >80% well‐foliated eclogite that wraps around rotated granulite blocks; and (4) anastomosing, subparallel, eclogite facies shear zones 30–100 m thick continuous over distances > 1 km within the granulite terrane. These shear zones deformed under eclogite facies conditions at an estimated temperature of 670 ± 50°C and a minimum pressure of 1460 MPa, which corresponds to depths of >55 km in the continental crust. Detailed investigation of the major shear zones shows the development of a strong foliation defined by the shape preferred orientation of omphacite and by alternating segregations of omphacite/garnet‐rich and kyanite/zoisite‐rich layers. A consistent lineation throughout the shear zones is defined by elongate aggregates of garnet and omphacite. The CPO of omphacite, determined from five‐axis universal stage measurements, shows a strong b‐axis maximum normal to foliation, and a c‐axis girdle within the foliation plane with weak maxima parallel to the lineation direction. These patterns are consistent with deformation of omphacite by slip parallel to [001] and suggest glide along (010). The lineation and CPO data reveal a consistent sense of shear zone movement, although the displacement was small. Localized faulting of high‐grade rocks accompanied by fluid infiltration can be an important mode of failure in the lower continental crust. Field relations show that granulite facies rocks can exist in a metastable state under eclogite facies conditions and imply that the lower crust can host differing metamorphic facies at the same depth. Deformation of granulite and partial conversion to eclogite, such as is exposed on Holsnøy Island, may be an orogenic‐scale process in the lowermost crust of collisional orogens.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call