Abstract

Here we use UV photoelectron spectroscopy (UPS) and metastable induced electron spectroscopy (MIES) to determine the valence electron structure of graphene oxide (GO) and hydrazine modified graphene oxide, or so-called reduced GO (rGO). We show that pristine GO has a low density of states (DOS) in the 2pπ region. Upon thermal treatment, under vacuum, to 200 °C, the DOS in the 2pπ region increase. The change in the DOS is also reflected in a change in the functional groups attached to the GO. These changes are followed by X-ray photoelectron spectroscopy (XPS). Based on the XPS measurements, the GO is described as highly carboxylated, much akin to pyromellite, with incorporated benzoquinone moieties. After heat treatment to 100 °C, we propose the close proximity of the pendant carboxyls undergoes a condensation reaction to form dianhdydrides such that the graphene sheet now consists of a mixture of dianhydride, phthalate-type carboxyl, and benzoquinone moieties with the work function increasing to 4.8 ± 0....

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.