Abstract

High-resolution synchrotron radiation x-ray powder diffraction (HR-XRPD) combined with Hf $L$3-edge extended x-ray absorption fine structure allowed us to determine the structure of a Hf-UiO-66 metal-organic framework (MOF) showing that it is isoreticular to Zr-UiO-66 MOF [Cavka et al., J. Am. Chem. Soc. 130, 13850 (2008).]. Thermal gravimetric measurements (coupled with mass spectroscopy) and temperature-dependent synchrotron radiation XRPD proved the high thermal stability of the Hf-UiO-66 MOF. The Langmuir surface area (849 m${}^{2}/$g) combined with the high stability of the UiO-66 framework and with the high neutron absorption cross section of Hf suggest that among all microporous crystalline materials the Hf-UiO-66 MOF possesses the physical and chemical requirements for the interim storage of radioactive waste in a much safer way than is currently available. The first results proving the synthesis of a MOF material with UiO-66 topology realized by a B-containing linker are also reported, allowing a further improvement of the neutron shielding power of this class of materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.