Abstract
Abstract This article illustrates that structural design synthesis can be achieved through a sequential decision process, whereby a sparsely connected seed configuration is sequentially altered through discrete actions to generate the best design solution, with respect to a specified objective and constraints. Specifically, the generative design synthesis is mathematically formulated as a finite Markov Decision Process. In this context, the states correspond to a specific structural configuration, the actions correspond to the available alterations that can be made to a given configuration, and the immediate rewards are constructed to be proportional to the improvement in the altered configuration’s performance. In the context of generative structural design synthesis, since the immediate rewards are not known at the onset of the process, reinforcement learning is employed to obtain an approximately optimal policy by which to alter the seed configuration to synthesize the best design solution. The approach is applied for the optimization of planar truss structures and its utility is investigated with three numerical examples, each with unique domains and constraints.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.