Abstract

Lithium-sulfur batteries (LSBs) are known to be potential next-generation energy storage devices. Recently, our group reported an LSB cathode made using sulfur spheres that has been spherically templated by MXene nanosheets decorated with CoSe2 nanoparticles, forming a "loose-templating" configuration. It was postulated that the minimal restacking of the outer nanoparticle-decorated MXene layer helps to enable facile ionic transport. However, as the nanosheets do not adhere conformally to the internal sphere's surface, such a configuration can be controversial, thus requiring a more systematic understanding. In this work, we report and quantify for the first time the independent and dependent variables involved in this morphology, allowing us to identify that having smaller nanoparticles resulted in better Li+ ion transport and enhanced electrochemical performances. The optimized cathode structure exhibited an initial specific capacity of 1274 mAh/g and a 0.06% decay rate per cycle at 0.5 C over 1000 cycles in LSBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.