Abstract

The evolution of structural design features for commercial fusion power reactor magnet systems is discussed. Changing concepts in plasma physics and impurity control, new data on radiation damage in materials and developments in the maintainability and repairability of the magnet systems are the driving influences in this evolution. Generic problems in the magnet designs are discussed for several proposed magnetic confinement system configurations, including tokamaks, tandem mirrors, the Elmo Bumpy Torus, and the reversed field theta pinch. These systems are compared on the basis of how efficiently the magnets make use of structural materials. A measure of the effectiveness of a magnet system is found by determining the ratio of net electric power output from the reactor to the stored energy in the magnetic fields produced by the magnet coils in a given system. The stored energy in the magnetic field can then be used to establish a minimum structural volume and mass by use of the virial theorem. Experience with coil types such as solenoids, toroids, Yin-Yang, etc. has established factors by which the minima must be multiplied to yield anticipated volumes and masses of realistic magnet systems. These initial, admittedly approximate, calculations allow designers to estimate early in the process the contribution of the magnet systems to the overall cost of a fusion reactor. As work progresses these estimates can be used to indicate the degree to which the designer is making effective use of the structural material. Basic rules for effective placement of structure, common to all magnet systems, are also discussed in detail. Factors are presented which make it possible to compare structural savings to the cost of researching the parameters involved in the stability of superconductors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call