Abstract

The Air Force Institute of Technology is in the process of designing a space shuttle experiment designated as the Rigidized Inflatable Get-Away-Special Experiment (RIGEX) to study the effects of microgravity on the deployment of inflatable rigidizable composite structures. Once in space, the experiment is designed to inflate and rigidize three composite tubes (which could be used in a more global space structure), then perform a vibration analysis on each by exciting the structures using piezoelectric patches mounted to the walls of the tubes and collect data via accelerometers. The experiment is designed to take part in the National Aeronautics and Space Administration (NASA) get-away-special program and as such must meet structural verification standards to be pay loaded as such. This paper presents the structural and vibration analysis of the RIGEX assembly and inflatable composite tubes using ABAQUS finite-element analysis (FEA) software. Results of the FEA showed good correlation when compared to eigenvalue/eigenvector experimental results obtained from ping testing the actual structures. This finite-element analysis has been used to modify the experiments design to meet NASA structural integrity requirements and verify the natural frequency of the RIGEX structural support assemblies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.