Abstract

To explore the overall mechanical properties of bamboo-wood composite cross-laminated timber (BCLT), a simulation model of BCLT mechanical behavior based on the solid element was established using the finite element software ABAQUS. The actual four-point bending experiment was compared and analyzed with the finite element numerical simulation. The total curve error coefficient of the BCLT specimen at 18-mm displacement was 0.2988 while the interval was 0.5 mm. The error coefficient was 0.0178 when the maximum load was reached, and the minimum error coefficient was 0.0015 at 12 mm of displacement. Analysis of the influence of material parameters, meshing density, and material arrangement on the final stress distribution indicate that the difference in the elastic parameters of the material greatly influence the final stress distribution, and the arrangement and combination of materials also have an effect on the overall mechanical properties of the BCLT board. The combination CLT1-2-1 (i.e., the upper and lower layers of the bamboo are Arrangement 1 and the hemlock is Arrangement 2) have a maximum load of 57682 Ν and a maximum stress of 103.9 MPa.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call