Abstract

Tensegrity systems are self-stressed reticulate structures, composed of a set of compressed struts assembled inside a continuum of tendons. This principle can be at the origin of large, lightweight and transparent structures. In practice, a few structures of this kind were built, partly because they are very demanding in design and analysis. In the wish to contribute to the development of practical structural applications, we propose in this paper a design procedure that combines form-finding and structural dimensioning under static load. To optimise the behaviour in the dynamic domain, we present a general methodology suited for the control of the first vibration modes. The case of a modular tensegrity footbridge is taken for application, taking into account different materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call