Abstract

AbstractVision system is crucial for autonomous robots. In order to realize some visual performances by complicated eye movements, like tracking target, image stabilization and vestibulo-ocular reflex, we present the mechanism and simulation of a robot bionic eye based on spherical ultrasonic motor (SUSM) with three rotational degrees of freedom (3-DOF). SUSM is a compact mechanism occupying little space but good responsiveness, high positioning accuracy, high torque at low speed and strong magnetic field compatibility. So based on SUSM, the bionic eye is fit to solve the problem of vision instability during robots’ working. The bionic eye is constructed of three annular stators adhered with several piezoelectric elements and a spherical rotor as a camera actuator. The rotor is driven by frictional forces from the three stators accompanying with same preload generated by the deformations of specialized coil springs. Through simulation by a virtual prototype to analyze the rotational speed, torque and responsiveness, our mechanical design is verified to be reasonable and effective preliminary.KeywordsBionic eyespherical ultrasonic motor3-DOFmechanical designsimulation and analysis

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.