Abstract
In structural DNA nanotechnology, E-tiling DNA nanotubes are evidenced to be homogeneous in diameter and thus have great potential in biomedical applications such as cellular transport and communication, transmembrane ion/molecule channeling, and drug delivery. However, a precise structural description of chiral DNA nanotubes with chiral parameters was lacking, thus greatly hindering their application breadth and depth, until we recently raised and partly solved this problem. In this perspective, we summarize recent progress in defining the chiral indices and handedness of E-tiling DNA nanotubes by microscopic imaging, especially atomic force microscopy (AFM) imaging. Such a detailed understanding of the chiral structures of E-tiling DNA nanotubes will be very helpful in the future, on the one hand for engineering DNA nanostructures precisely, and, on the other, for realizing specific physicochemical properties and biological functions successfully.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chembiochem : a European journal of chemical biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.