Abstract

Two-dimensional infrared (2D-IR) spectroscopy is a powerful experimental method for probing the structure and dynamics of proteins in aqueous solution. So far, most experimental studies have focused on the amide I vibrations, for which empirical vibrational exciton models provide a means of interpreting such experiments. However, such models are largely lacking for other regions of the vibrational spectrum. To close this gap, we employ an efficient quantum-chemical methodology for the calculation of 2D-IR spectra, which is based on anharmonic theoretical vibrational spectroscopy with localized modes. We apply this approach to explore the potential of 2D-IR spectroscopy in the extended amide III region. Using calculations for a dipeptide model as well as alanine polypeptides, we show that distinct 2D-IR cross-peaks in the extended amide III region can potentially be used to distinguish α-helix and β-strand structures. We propose that the extended amide III region could be a promising target for future 2D-IR experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.