Abstract

Structural defects and optical features of p-type CzSi after implantation of erbium ions with 1 MeV energy and 1×10 14 cm −2 dose followed by annealing at (620–1100 °C) for 0.5–1.0 h in chlorine-containing atmosphere (CCA) or argon have been studied by transmission electron microscopy (TEM), optical microscopy in combination with selective chemical etching, and photoluminescence (PL). High temperature annealing in the chlorine-containing ambience gives rise to perfect prismatic dislocation loops as well as 60° and pure edge dislocations with dominant dislocation-related lines in the PL spectrum. Pure edge dislocations are responsible for the appearance of the lines. The Er-related lines due to the intra-4f shell transitions in the rare earth ions dominate in the PL spectra and no structural defects are observed after high temperature annealing in argon. The role of the intrinsic point defects in the transformation of structural defects and optically active centers is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.