Abstract

3C-SiC p-type epilayers were grown to thicknesses of 1.5, 3, 6 and 10 μm on 2.5° off-axis Si(001) substrates by chemical vapor deposition (CVD). Silane and propane were used as precursors. Structural analysis of epilayers was performed using transmission electron microscopy (TEM), high-resolution x-ray diffractometry (HRXRD), and Raman spectroscopy. TEM showed defect densities (stacking faults, twins and dislocations) decreasing with increasing distance from the SiC/Si interface as the lattice mismatch stress is relaxed. This observation was corroborated by a monotonic decrease in HRXRD peak width (FWHM) from 780 arcsecs (1.5 μm thick epilayer) to 350 arcsecs (10 μm thick epilayer). Significant further reduction in x-ray FWHM is possible because the minimum FWHM detected is greater than the theoretical FWHM for SiC (about 12 arcsecs). Raman spectroscopy also indicates that the residual biaxial in-plane strain decreases with increasing epilayer thickness initially, but becomes essentially constant between 6 and 10 μm. Structural defect density shows the most significant reduction in the first 2 μm of growth. Phosphorus implantation was used to generate n+/p junctions for the measurement of the critical electric field in 3C-SiC. Based on current-voltage analyses, the critical electric field in p-type 3C-SiC with a doping of 2x1017 cm-3 is 1.3x106 V/cm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.